The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X 1 1 X X X X 1 X X X 1 X 1 1 2 X 1 X X 2 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 0 2 2 2 0 2 0 2 0 2 2 0 2 0 2 0 0 2 0 2 2 0 0 0 2 0 0 2 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 0 2 0 2 2 0 2 2 2 0 0 2 0 2 0 2 0 2 0 0 2 0 2 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 2 2 2 2 0 2 2 2 0 2 2 2 0 2 0 0 2 2 2 0 2 2 2 0 2 0 0 0 2 0 0 0 0 2 2 2 2 2 0 0 0 2 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 2 2 0 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 0 2 2 0 2 2 2 2 0 2 2 2 0 2 2 0 0 2 2 0 0 0 0 2 2 2 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 2 2 2 2 2 0 0 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 2 0 0 0 0 2 2 2 0 2 2 2 2 2 2 2 2 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 2 0 0 2 0 0 2 2 0 2 0 2 0 2 0 2 0 2 2 0 0 0 2 0 2 2 2 0 2 2 2 2 0 0 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 2 2 0 0 2 2 2 0 0 2 2 2 2 0 2 0 0 2 0 0 2 2 2 0 0 0 2 2 0 0 2 0 0 2 0 2 2 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 0 0 0 2 0 0 0 2 2 2 2 0 0 0 2 0 2 0 0 0 2 0 0 2 0 2 2 2 0 0 2 0 2 2 2 2 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2 2 0 2 0 2 0 2 0 2 2 0 0 2 2 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 2 0 2 0 0 0 0 0 0 2 generates a code of length 58 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 46. Homogenous weight enumerator: w(x)=1x^0+31x^46+91x^48+139x^50+169x^52+207x^54+779x^56+1315x^58+761x^60+207x^62+157x^64+89x^66+56x^68+49x^70+27x^72+9x^74+5x^76+2x^78+1x^80+1x^84 The gray image is a code over GF(2) with n=232, k=12 and d=92. This code was found by Heurico 1.16 in 1.55 seconds.